1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//! prctl is a Linux-only API for performing operations on a process or thread.
//!
//! Note that careless use of some prctl() operations can confuse the user-space run-time
//! environment, so these operations should be used with care.
//!
//! For more documentation, please read [prctl(2)](https://man7.org/linux/man-pages/man2/prctl.2.html).

use crate::errno::Errno;
use crate::sys::signal::Signal;
use crate::Result;

use libc::{c_int, c_ulong};
use std::convert::TryFrom;
use std::ffi::{CStr, CString};

libc_enum! {
    /// The type of hardware memory corruption kill policy for the thread.

    #[repr(i32)]
    #[non_exhaustive]
    #[allow(non_camel_case_types)]
    pub enum PrctlMCEKillPolicy {
        /// The thread will receive SIGBUS as soon as a memory corruption is detected.
        PR_MCE_KILL_EARLY,
        /// The process is killed only when it accesses a corrupted page.
        PR_MCE_KILL_LATE,
        /// Uses the system-wide default.
        PR_MCE_KILL_DEFAULT,
    }
    impl TryFrom<i32>
}

fn prctl_set_bool(option: c_int, status: bool) -> Result<()> {
    let res = unsafe { libc::prctl(option, status as c_ulong, 0, 0, 0) };
    Errno::result(res).map(drop)
}

fn prctl_get_bool(option: c_int) -> Result<bool> {
    let res = unsafe { libc::prctl(option, 0, 0, 0, 0) };
    Errno::result(res).map(|res| res != 0)
}

/// Set the "child subreaper" attribute for this process
pub fn set_child_subreaper(attribute: bool) -> Result<()> {
    prctl_set_bool(libc::PR_SET_CHILD_SUBREAPER, attribute)
}

/// Get the "child subreaper" attribute for this process
pub fn get_child_subreaper() -> Result<bool> {
    // prctl writes into this var
    let mut subreaper: c_int = 0;

    let res = unsafe { libc::prctl(libc::PR_GET_CHILD_SUBREAPER, &mut subreaper, 0, 0, 0) };

    Errno::result(res).map(|_| subreaper != 0)
}

/// Set the dumpable attribute which determines if core dumps are created for this process.
pub fn set_dumpable(attribute: bool) -> Result<()> {
    prctl_set_bool(libc::PR_SET_DUMPABLE, attribute)
}

/// Get the dumpable attribute for this process.
pub fn get_dumpable() -> Result<bool> {
    prctl_get_bool(libc::PR_GET_DUMPABLE)
}

/// Set the "keep capabilities" attribute for this process. This causes the thread to retain
/// capabilities even if it switches its UID to a nonzero value.
pub fn set_keepcaps(attribute: bool) -> Result<()> {
    prctl_set_bool(libc::PR_SET_KEEPCAPS, attribute)
}

/// Get the "keep capabilities" attribute for this process
pub fn get_keepcaps() -> Result<bool> {
    prctl_get_bool(libc::PR_GET_KEEPCAPS)
}

/// Clear the thread memory corruption kill policy and use the system-wide default
pub fn clear_mce_kill() -> Result<()> {
    let res = unsafe { libc::prctl(libc::PR_MCE_KILL, libc::PR_MCE_KILL_CLEAR, 0, 0, 0) };

    Errno::result(res).map(drop)
}

/// Set the thread memory corruption kill policy
pub fn set_mce_kill(policy: PrctlMCEKillPolicy) -> Result<()> {
    let res = unsafe {
        libc::prctl(
            libc::PR_MCE_KILL,
            libc::PR_MCE_KILL_SET,
            policy as c_ulong,
            0,
            0,
        )
    };

    Errno::result(res).map(drop)
}

/// Get the thread memory corruption kill policy
pub fn get_mce_kill() -> Result<PrctlMCEKillPolicy> {
    let res = unsafe { libc::prctl(libc::PR_MCE_KILL_GET, 0, 0, 0, 0) };

    match Errno::result(res) {
        Ok(val) => Ok(PrctlMCEKillPolicy::try_from(val)?),
        Err(e) => Err(e),
    }
}

/// Set the parent-death signal of the calling process. This is the signal that the calling process
/// will get when its parent dies.
pub fn set_pdeathsig<T: Into<Option<Signal>>>(signal: T) -> Result<()> {
    let sig = match signal.into() {
        Some(s) => s as c_int,
        None => 0,
    };

    let res = unsafe { libc::prctl(libc::PR_SET_PDEATHSIG, sig, 0, 0, 0) };

    Errno::result(res).map(drop)
}

/// Returns the current parent-death signal
pub fn get_pdeathsig() -> Result<Option<Signal>> {
    // prctl writes into this var
    let mut sig: c_int = 0;

    let res = unsafe { libc::prctl(libc::PR_GET_PDEATHSIG, &mut sig, 0, 0, 0) };

    match Errno::result(res) {
        Ok(_) => Ok(match sig {
            0 => None,
            _ => Some(Signal::try_from(sig)?),
        }),
        Err(e) => Err(e),
    }
}

/// Set the name of the calling thread. Strings longer than 15 bytes will be truncated.
pub fn set_name(name: &CStr) -> Result<()> {
    let res = unsafe { libc::prctl(libc::PR_SET_NAME, name.as_ptr(), 0, 0, 0) };

    Errno::result(res).map(drop)
}

/// Return the name of the calling thread
pub fn get_name() -> Result<CString> {
    // Size of buffer determined by linux/sched.h TASK_COMM_LEN
    let buf = [0u8; 16];

    let res = unsafe { libc::prctl(libc::PR_GET_NAME, &buf, 0, 0, 0) };

    let len = buf.iter().position(|&c| c == 0).unwrap_or(buf.len());
    let name = CStr::from_bytes_with_nul(&buf[..=len]).map_err(|_| Errno::EINVAL)?;

    Errno::result(res).map(|_| name.to_owned())
}

/// Sets the timer slack value for the calling thread. Timer slack is used by the kernel to group
/// timer expirations and make them the supplied amount of nanoseconds late.
pub fn set_timerslack(ns: u64) -> Result<()> {
    let res = unsafe { libc::prctl(libc::PR_SET_TIMERSLACK, ns, 0, 0, 0) };

    Errno::result(res).map(drop)
}

/// Get the timerslack for the calling thread.
pub fn get_timerslack() -> Result<i32> {
    let res = unsafe { libc::prctl(libc::PR_GET_TIMERSLACK, 0, 0, 0, 0) };

    Errno::result(res)
}

/// Disable all performance counters attached to the calling process.
pub fn task_perf_events_disable() -> Result<()> {
    let res = unsafe { libc::prctl(libc::PR_TASK_PERF_EVENTS_DISABLE, 0, 0, 0, 0) };

    Errno::result(res).map(drop)
}

/// Enable all performance counters attached to the calling process.
pub fn task_perf_events_enable() -> Result<()> {
    let res = unsafe { libc::prctl(libc::PR_TASK_PERF_EVENTS_ENABLE, 0, 0, 0, 0) };

    Errno::result(res).map(drop)
}

/// Set the calling threads "no new privs" attribute. Once set this option can not be unset.
pub fn set_no_new_privs() -> Result<()> {
    prctl_set_bool(libc::PR_SET_NO_NEW_PRIVS, true) // Cannot be unset
}

/// Get the "no new privs" attribute for the calling thread.
pub fn get_no_new_privs() -> Result<bool> {
    prctl_get_bool(libc::PR_GET_NO_NEW_PRIVS)
}

/// Set the state of the "THP disable" flag for the calling thread. Setting this disables
/// transparent huge pages.
pub fn set_thp_disable(flag: bool) -> Result<()> {
    prctl_set_bool(libc::PR_SET_THP_DISABLE, flag)
}

/// Get the "THP disable" flag for the calling thread.
pub fn get_thp_disable() -> Result<bool> {
    prctl_get_bool(libc::PR_GET_THP_DISABLE)
}